Cov-$

It always a good idea
to get stakeholders
involved. One of the
best ways to do this is
to have each stoke-
folder write use-cases
that describe how fhe
software will be used.

CHAPTER 7 REQUIREMENTS ENGINEERING 197

Scenario-based elements. The system is described from the user’s point of view
using a scenario-based approach. For example, basic use-cases (Section 7.5) and
their corresponding use-case diagrams (Figure 7.3) evolve into more elaborate
template-based use-cases. Scenario-based elements of the analysis model are often
the first part of the analysis model that is developed. As such, they serve as input for
the creation of other modeling elements.

A somewhat different approach to scenario-based modeling depicts the activities or
functions that have been defined as part of the requirement elicitation task. These func-
tions exist within a processing context. That is, the sequence of activities (the terms func-
tions or operations can also be used) that describe processing within a limited context
are defined as part of the analysis model. Like most elements of the analysis model (and
other software engineering models), activities (functions) can be represented at many
different levels of abstraction. Models in this category can be defined iteratively. Each it-
eration provides additional processing detail. As an example, Figure 7.4 depicts a UML
activity diagram for eliciting requirements.' Three levels of elaboration are shown.

Activity
diagrams for
eliciting
requirements

14 The activity diagram is quite similar to the flowchart—a graphical diagram for representing control-

flow sequences and logic (Chapter 11).



198

PART TWO SOFTWARE ENGINEERING PRACTICE

Class diagram
for Sensor

e'uma’

One way to isolate
dlasses is to look for
descriptive nouns in @
use-case script. At
least some of the
nouns will be
condidate closses.
More on this in
Chapter 8.

N
o

POINT
A'state is on externally
observable mode of
behavior. Externol
stimuli cause
transitions between
states.

Class-based elements. Each usage scenario implies a set of “objects” that are
manipulated as an actor interacts with the system. These objects are categorized
into classes—a collection of things that have similar attributes and common be-
haviors. For example, a class diagram can be used to depict a Sensor class for the
SafeHome security function (Figure 7.5). Note that the diagram lists the attributes
of sensors (e.g., namef/id, type) and the operations [e.g., identify(), enable()] that can
be applied to modify these attributes. In addition to class diagrams, other analysis
modeling elements depict the manner in which classes collaborate with one an-
other and the relationships and interactions between classes. These are discussed
in more detail in Chapter 8.

Behavioral elements. The behavior of a computer-based system can have a pro-
found ‘effect on the design that is chosen and the implementation approach that is
applied. Therefore, the analysis mode!l must provide modeling elements that depict
behavior.

The state diagram (Chapter 8) is one method for representing the behavior of a sys-
tem by depicting its states and the events that cause the system to change state. A
state is any observable mode of behavior. In addition, the state diagram indicates
what actions (e.g., process activation) are taken as a consequence of a particular
event.

To illustrate a state diagram, consider a reading commands state for an office pho-
tocopier. UML state diagram notation is shown in Figure 7.6. A rounded rectangle
represents a state. The rectangle is divided into three areas: (1) the state name (e.g.,
Reading commands), (2) state variables that indicate how the state manifests itself to
the outside world, and (3) state activities that indicate how the state is entered (entry/)
and actions (do:) that are invoked while in the state.



CHAPTER 7 REQUIREMENTS ENGINEERING 199

UML state
diagram
notation

State name

State variables

State activities

SAFEHOME

Flow-oriented elements. Information is transformed as it flows through a
computer-based system. The system accepts input in a variety of forms; applies func-
tions to transform it; and produces output in a variety of forms. Input may be a control
signal transmitted by a transducer, a series of numbers typed by a human operator, a
packet of information transmitted on a network link, or a voluminous data file retrieved
from secondary storage. The transform(s) may comprise a single logical comparison, a



200

WebRef

Is there a
recommended

tenplu!e for

patterns?

PART TWO SOFTWARE ENGINEERING PRACTICE

complex numerical algorithm, or a rule-inference approach of an expert system. Out-
put may light a single LED or produce a 200-page report. In effect, we can create a flow
model for any computer-based system, regardless of size and complexity. A more de-
tailed discussion of flow modeling is presented in Chapter 8.

7.6.2 Analysis Patterns

Anyone who has done requirements engineering on more than a few software proj-
ects begins to notice that certain things reoccur across all projects within a specific
application domain.!® These can be called analysis patterns [FOW97] and represent
something (e.g., a class, a function, a behavior) within the application domain that
can be reused when modeling many applications.

Geyer-Schulz and Hahsler [GEYO1] suggest two benefits that can be associated
with the use of analysis patterns: :

First, analysis patterns speed up the development of abstract analysis models that cap-
ture the main requirements of the concrete problem by providing reusable analysis mod-
els with examples as well as a description of advantages and limitations. Second, analysis
patterns facilitate the transformation of the analysis model into a design model by sug-
gesting design patterns and reliable solutions for common problems.

Analysis patterns are integrated into the analysis model by reference to the pattern
name. They are also stored in a repository so that requirements engineers can use
search facilities to find and reuse them.

Information about an analysis pattern is presented in a standard template that
takes the form [GEYO1]:'¢

Pattern name: A descriptor that captures the essence of the pattern. The descriptor
is used within the analysis model when reference is made to the pattern.

Intent: Describes what the pattern accomplishes or represents and/or what problem
is addressed within the context of an application domain.

Motivation: A scenario that illustrates how the pattern can be used to address the
problem.

Forces and context: A description of external issues (forces) that can affect how the
pattern is used and also the external issues that will be resolved when the pattern is ap-
plied. External issues can encompass business-related subjects, external technical con-
straints, and people-related matters.

Solution: A description of how the pattern is applied to solve the problem with an em-
phasis on structural and behavioral issues.

Consequences: Addresses what happens when the pattern is applied and what
trade-offs exist during its application.

15 In some cases, things reoccur regardless of the application domain. For example, the features and
functions of user interfaces are common regardless of the application domain under consideration.

16 A variety of patterns templates have been proposed in the literature. Interested readers should see
[FOW97], [BUS96}, and [GAM95] among many Sources.



